빅데이터,스트림데이터 in Python
파이썬은 인공지능(머신러닝,딥러닝)에서 굉장히 Hot 한 언어이다. 벡터,행렬 같은 머신러닝에 필요한 연산들을 제공해주는 라이브러리가 있기 때문에 , 그래프를 시각화해서 볼 수 있기 때문에, 이를 기반으로 여러 딥러닝 프레임워크들이 제공 되어진다. 딥러닝이 머신러닝에 비해 본격적으로 주목을 받게 된것은 빅데이터에서의 퍼포먼스가 머신러닝 보다 더 뛰어나다는 연구결과가 있고 나서이다. 그리고, 현재 딥러닝 프로세스는 한번에 데이터를 저장한 다음에 처리하는 것이 아니라 , 지속적으로 데이터가 들어오면서 동시에 처리하고 이를 학습에 사용하는 Cycle의 형태이기 때문에 , 스트림 데이터에 대한 취급도 중요합니다. (본 글은, 빅데이터 스트림 데이터에 대한 개념이 있다 가정하고 진행) 즉, 파이썬에서 빅데이터,스..
1강- 확률과 셈 원리 (Probability and Counting)
수강 일자: 07월 20일 머신러닝 공부는 이론보다는 프로젝트를 통해서 코딩하는 법을 익히는 것이 중요하다고 합니다. 하지만, 가장 기본적인 classification 도 남들이 만들어 놓은 결과를 그대로 가져다 쓸 뿐입니다. 예를 들어 , softmax는 Label 수만큼의 결과를 가지고 있고 , 더한 값은 1이 되는 확률 값입니다. *그냥 그렇다고 넘어가고 , 자세히 설명해주진 않습니다. * 인공지능 , 특히 딥러닝 알고리즘에서 특징을 추출한 다음에 결과 도출은 확률론에서 나온 이론을 사용합니다. 이번 확률론을 공부하면서 인공지능에서 Black Box로 여기던 부분을 더 파헤쳐 보겠습니다 Statistics 110 1강입니다. 확률론의 활용영역: 유전학, 물리학, 계랑 경제학, 금융, 역사학, 정치 ..