본문 바로가기

mnist

(2)
Mnist를 이용한 face_verification 기존의목표 이미지 데이터를 배치 데이터로 semi triplet hard 방식으로 학습을 시키는 것이 목표엿습니다. 그러기 위해선, 사람의 얼굴을 개인별로 라벨링을 해줘야할 필요가 있습니다. 하지만, 최소 3~4천장의 얼굴을 라벨링하고 사람마다 20장 정도를 구성해야 필요가 있습니다. 시간적 , 비용적 한계에 부딪혓습니다. 따라서, 이미지 데이터 특성상 Fine_Tuning의 효과가 크므로 , Pre_trained 모델을 찾아보고자 했습니다. 결국 , 사용할 수 있는 모델을 찾지 못했습니다. 여기서, 한가지 떠올렸습니다. 우리가 하고자 하는것은 유사도 함수를 통하여 Clustering을 하는것. 어떤 이미지 데이터를 써도 상관 없을것. Mnist 데이터를 input으로 줘서 유사도 함수를 학습하면 어떨까..
Mnist 학습해보기 ※제가 소모임에서 했엇던 활동을 제 개인 블로그에 다시업로드 한 것입니다. 2020/02/21 3.5기 3팀 최웅준,송근영,김정민 장소: 능곡역 지노스 까페 합성곱을 이용한 신경망을 구성하여 Mnist를 학습하였다. 28 x 28 사이즈의 이미지셋으로 총 60000장을 라이브러리 'torchvision'에서제공해준다. 모델구조 구글에 있는 MNIST 모델을 참조하였습니다. import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms import matplotlib.pyplot as plt import random 위와 같은 라이브러리를 import 하였습니다...